Numerical criteria for integral dependence

نویسندگان

  • JAVID VALIDASHTI
  • BERND ULRICH
چکیده

We study multiplicity based criteria for integral dependence of modules or of standard graded algebras, known as ‘Rees criteria’. Rather than using the known numerical invariants, we achieve this goal with a more direct approach by introducing a multiplicity defined as a limit superior of a sequence of normalized lengths; this multiplicity is a non-negative real number that can be irrational.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Criterion for Integral Dependence of Modules

Let R be a universally catenary locally equidimensional Noetherian ring. We give a multiplicity based criterion for an arbitrary finitely generated R-module to be integral over a submodule. Our proof is self-contained and implies the previously known numerical criteria for integral dependence of ideals and modules.

متن کامل

A numerical characterization of reduction for arbitrary modules

Let (R,m) be a d-dimensional Noetherian local ring and E a finitely generated R-submodule of a free module R. In this work we introduce a Buchsbaum-Rim multiplicity sequence ck(E), k = 0, . . . , d + p − 1 for E that generalize the Buchsbaum-Rim multiplicity defined when E has finite colength in R as well as the Achilles-Manaresi multiplicity sequence that applies when E ⊆ R is an ideal. Our ma...

متن کامل

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.

متن کامل

An efficient method for the numerical solution of functional integral equations

We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.

متن کامل

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012